Home-Aluminum Extrusion
Custom Aluminum Extrusion

Custom Aluminum Extrusion

If you look for low volume custom aluminum extrusion parts or services, RapidDone can be one of your best options.

RapidDone works with solid extrusion manufacturing partner. We have different kinds of the aluminum extrusion manufacturing technologize, we can build your aluminum extrusion profiles in multiple lengths as well as complex geometries, covering both small size and big size.

RapidDone has strong CNC machining capability, so we can do precision post-machining in house for your custom extrusion parts at high quality and fast lead times.

Get A Quick Quote

Our outstanding services for aluminum extrusion

Why should you choose custom aluminum extrusion services from us?
We are the leading manufacturing company that can offer you an outstanding solution at a competitive rate for your customized project. We can provide a lot of secondary processes such as CNC milling, cutting, drilling, polishing, finishing, and more.
We are sure that you can get your extruded parts that meet and exceed your expectations.

Precision aluminum extrusion
Prototype aluminum extrusion
Customized Aluminum Extrusion

RapidDone have a great team to make precision parts. Once you have a requirement for high precision aluminum extrusion parts, we can use our highly-skilled specialists and our precision machines to make it for you.

Aluminum extrusion parts always comes with an extrusion tool, it is a little difficult to get prototype aluminum extrusions. RapidDone can offer prototyping services and handle low-volume projects for our customer requirements.

As a one-stop solution company, we have strong custom manufacturing capability. RapidDone can offer a total solution with our aluminum extrusion service, we can custom your required products based on your design requirement.

The Complete Guide for Custom Aluminum Extrusion

Aluminum extrusion -like CNC machining, injection molding, and sheet metal fabrication, is one of the most manufacturing ways for the manufacturing industry. As a traditional prototyping manufacturing and low-volume manufacturing company, we accumulate huge experience including profile extrusion. In the following guide, we are going to go through everything about this manufacturing process. It will help you when you want to look for an aluminum extrusion specialized knowledge or services.

The Complete Guide for Aluminum Extrusion

What is aluminum extrusion?

Extrusion is a bulk deformation process in which the raw material, such as aluminum, is forced to flow through a die opening with the desired dimensions and cross-sectional shape. It is similar to what happens when we squeeze toothpaste out of a tube before brushing our teeth.

In this process, a gradual compressive force acts either on a piston or a cylinder. The cylinder contains the aluminum to form a larger version with its cross-section modified by the die. This process allows obtaining both hollow or solid cross-sections.

Types of aluminum extrusion

To achieve the extrusion process different techniques are used. Two physical configurations allow us to classify extrusion as direct or indirect based on the location of the die.

When you place the die in the container the process is known as direct extrusion and, if the die is located on the piston, an indirect extrusion process is taking place.

Another way to classify it is as a cold, warm, or hot process based on the working temperature of the raw material.

Last but not least, aluminum extrusion is also classified as discrete and semi-continuous.

Discrete refers to impact extrusion, in which shorter pieces are created from a single piece of raw material applying an impact force. Semi-continuous refers to a process in which a constant force is applied to a large piece of raw material, and it is used to obtain larger profiles.

How is aluminum extruded? The whole process

To run a proper extrusion process for aluminum alloys these few steps need to be taken into account:

1.Selecting the die:

Before starting an extrusion process, the correct die (usually made of steel alloy) is selected or designed to match the customer’s cross-sectional requirements. After the selection phase, the die is then placed at the end of the container.

Since extrusion is a mass-production technique, it’s crucial to periodically inspect the condition of the dies to ensure the quality of the product.

2.Machinery configuration:

each aluminum alloy needs to be configured depending on the cross-section desired. Piston force, also known as ram force, and its correct displacement must be selected to obtain a better product.

In a direct extrusion process, the ram forces are higher due to the friction effect between the billet and the container walls. For aluminum alloys, piston forces range between 800 and 2000 tons.

3.Setting up the raw material:

large cylinders of aluminum, known as billets are placed inside the container. These billets come in different diameters ranging from eight to sixteen inches.

The alloy must be chosen before starting the process and, in the case of hot extrusion, its temperature needs to rise inside a hoven until it reaches aluminum’s crystallization point (between 450 and 500 °C for most aluminum alloys).

When the heating process is over, and the aluminum has reached a plastic state that allows it to easily flow through the die, the billet is fed to the extruder.

4.Lubrication:

to reduce friction and avoid the creation of aluminum slag, a lubrication system applies fluid to the cylinder. When hot extruding, glass may be used as a lubricant, in other cases, oils and grease are used.

Selecting the proper lubricant, it’s important to avoid excessive pressure levels and residual stresses on the final product.

5.Extrusion:

After everything is ready, the extrusion process begins. The piston pushes the aluminum billet into the die (direct extrusion) plastically deforming it to obtain the required cross-section.

The entire process is monitored using the latest technologies to increase the efficiency of the process. Monitoring extrusion data allows us to create extrusion recipes saving time and money in future projects involving the same alloy and die.

6.Cooling:

After exiting the extruder, billets are grabbed by the puller, guiding the profiles through the run-out table, where a series of fans will start to cool them.

In some cases, water quenching techniques need to be applied to improve the mechanical properties of the profile. Water causes the aluminum to shrink, so an additional stretching process is performed to achieve the proper dimensions and tolerances.

7.Cutting and stacking:

The long aluminum profiles are then cut into pieces of 20 ft. or less using an automated table saw. They are stacked and loaded into carts to continue with the aging process if needed.

8.Aging process:

After the cooling process, aluminum is in a T4 tempered state. In some cases, when better mechanical properties are required, the aluminum is sent back into an artificial aging oven, where the aluminum gets a T5 or T6 temper hardness.

Secondary machining processes that follow aluminum extrusion

There are several processes that could follow aluminum extrusion, the most remarkable are:

1.Cutting:

probably the most common secondary process, cutting is achieved by using a metal saw or an EDM process to match the length of the profile to the one specified based on its application, this is done because most profiles are extruded to standard lengths that might be longer than what is needed.

2.Grinding:

a grinding process is done to change the appearance of the profile or to remove any superficial imperfection.

3.Welding:

Profiles are frequently welded together, especially when working in the construction, naval and automotive industries.

4.CNC Machining:

CNC machining is less likely to be performed on extruded profiles. Drilling and tapping are the most common of all CNC processes but mills and CNC punch presses are also used, it all depends on the pattern required and the profile’s application.

At RapidDone, we hold some precision CNC machines including 3-axis CNC machining and 5-axis CNC machines, we can take post-processing operations precisely according to your exact specifications. Please talk to our team if you have customized requirements.

Aluminum alloys used for extrusion

Aluminum is one of the most used materials in the extrusion process because of its convenient mechanical properties. Aluminum is not a hard material, this characteristic reduces the force required at the piston, making it possible to use smaller machinery that consumes less power.

After the extrusion process, aluminum profiles are most likely to be heat-treated inside an oven to increase its strength. Some of the most used aluminum alloys for extrusion are listed below:

1.Aluminum 1XXX series:

Also known as wrought aluminum alloys, they are composed of at least 99% aluminum and minor quantities of iron, copper, zinc, and magnesium.

Distinguished for its lightweight and corrosion resistance it is widely used in the industry even though it lacks mechanical resistance. It can be cold extruded and the profiles obtained are great for welding applications.

Wrought aluminum does not harden by heat treatment but it can be annealed at 350°C and cooled in the air to improve its mechanical properties.

2.Aluminum 3XXX series:

Exceeding the 1XXX series mechanical properties, the 3XXX series alloys are composed of higher manganese quantities, making it stronger but slightly heavier. They’re usually hardened by cold working and are not heat-treatable. Its thermal properties, weldability, and corrosion resistance make them suitable for HVCAR systems.

3.Aluminum 6XXX series:

The favorite alloys to be extruded are part of these series. Its composition has higher percentages of magnesium and silicon, enhancing aluminum’s mechanical properties.

These series have high strength, corrosion resistance and are very popular because they are heat-treatable, meaning that its mechanical properties could be improved after the extrusion process.

4.Aluminum 7XXX series:

These aluminum alloys include zinc as the primary alloy material and also use minor quantities of magnesium, copper, manganese, and chrome. After hardened, these alloys achieve the highest strengths compared to other aluminum series, making its formability less convenient.

These series have poor corrosion resistance, meaning that a coating treatment must be applied after the extrusion. These alloys are used for extruded profiles in the aerospace industry for their high strength.

Typical profile shaping for aluminum extrusion

Extruded aluminum profiles are shaped depending on their application, and the most common shapes to be manufactured are:

1.Round rod:

this extruded profile consists of a solid circular shape and it’s usually manufactured with small diameters with a maximum of 3,5 inches and the die used is very simple, which makes this a relatively easy and low-cost process.

2.Rectangular bar:

solid profile shaped as a rectangle or a square that is easy to manufacture. Its main application is to provide smaller aluminum pieces to minor industries.

3.Round tube:

aluminum round tubing is very popular in the construction and power industry. It consists of a circular (or oval) hollow shape. A wide variety of inside and outside diameter combinations can be found.

4.Rectangular tube:

Same as the round tube but it has a rectangular hollow shape that may or may not have rounded edges. It is used in structural applications and as machine component supports.

5.T-slotted profiles:

a T-slotted profile is a rectangular or squared profile that is optimized for maximum rigidity while being as light as possible. Some of the most popular T-slotted profiles are the 80/20 and the 40/40 which are used in industrial applications and as a frame part for CNC equipment, 3D printers, work tables, and many others.

6.Angles:

angles are very popular for industrial applications and they come with sharp and round edges and a wide variety of degrees, it all depends on the design specification.

7.Zee bar:

also known as the double angle profile, zee bars are used in construction applications for both indoor and outdoor environments. These profiles are also found as part of various frames and machine components.

 Tolerances

Tolerances are the deviation or variation limits in which a part can be produced and are usually agreed upon by both manufacturer and designer before starting the manufacturing process. Specification of tolerances is needed because no dimension or measurement is exact, and it depends on both machinery design and human factors. These deviations are controlled by international standards to diminish manufacturing errors.

The extrusion processes are known for their close tolerances, which have been previously approved by international technical committees. Since the process involves the use of a matrix or die, the latter can be designed with a specified tolerance so that, after the aluminum flows through it, its shape has the same tolerances as the die. In an extrusion process tolerances as close as +-0.004 are achieved.

Being able to adjust tolerances to such a minimal value allows for better designs focused on weight and cost reduction.

At RapidDone, we follow the standard general NADCA tolerances. However, if you have a high precision requirement for your customized project, you can talk to our team, our service team can come back to you quickly.

Finishes

For most applications, a surface finish must be applied to extruded aluminum parts to enhance their duration and to reduce the risks of suffering from corrosion. Surface finishes may also be applied to hide extrusion stripes generated by friction, which in most cases are seen all over the surface of an extruded profile, especially when the die needs to be replaced.

Some of the surface finishing processes used on extruded aluminum profiles are listed below:

1.Surface machining:

It includes techniques such as grinding, polishing, and tumbling. These surface finishes are used to improve the surface quality and to obtain even closest tolerances if needed.

2.Anodizing:

This anodizing process increases the aluminum oxide layer present on extruded surfaces. The main objective of the anodization is to enhance the corrosion resistance but it makes the surface more durable, provides electrical insulation, and may also provide a decorative glossy finishing with a lot of different colors.

It is the most popular finishing for extrusion parts.

3.Powder coating:

powder coating is used to apply any color desired to the surface and it also improves corrosion resistance, UV rays protection for outdoor applications, and also increases abrasion and impact resistance.

4.Others:

Other secondary surface finishes may be applied such as screen-printing and reflective coating, the surface finishing selection depends on the application of the extruded profile.

What is extrusion scrap?

Every manufacturing process involves the loss of raw material and extrusion is not an exception. The main source of scrap in an extrusion process is the inherent billet remains due to the impossibility to completely push it since, at some point, the piston will encounter the die.

Other sources of aluminum scrap are the small pieces of profile cut to match standard dimensions before the stacking process and the chips that result from a surface machining process.

Fortunately, aluminum scrap is recyclable and there’s virtually no waste related to the aluminum extrusion process. Aluminum extrusion could be perceived as a completely renewable manufacturing process.

The die used in aluminum extrusion processes

 Extrusion dies for aluminum are thick disks usually made of steel which contain one or more openings shaped like the desired profile. The steel they’re made of is heat-treated to withstand the high pressures needed for an efficient extrusion process.

Since extrusion dies are designed to support immense loads, they are built to be durable but need a constant inspection to ensure the optimal tolerances of the extruded profile. A direct inspection routine as well as constant measurement of the profiles extruded is needed to maintain the highest quality in the extrusion process.

The die used to obtain a solid profile is different from the one used for the manufacturing process of hollow profiles.

1.Solid profile dies 

A solid profile die is composed of four parts or plates. The feeder plate, located at the front of the die, has two orifices to control the flow of aluminum.

The following part is known as the die plate, which contains the profile shape and behind it, the backer plate is located, which is thicker than the two firsts and has a similar pair of orifices that prevent the failure of the created profile during long extrusions.

The bolster plate is located at the end and it’s the thickest of all four because its purpose is to support all the pressure needed in an extrusion process.

2.Hollow and semi-hollow dies

Hollow and semi-hollow profile dies are composed of three plates. The first one is known as the mandrel controls the flow of metal and generates the inner features of the profile.

The second plate is known as the die cap and it has the shape of the profile. The last one is the thick bolster plate, which is responsible for supporting the extrusion load.

Why/When to use the extrusion process on aluminum?

The answer to this question is mass production. When manufacturing for mass production, processes that assure quality are very important to maintain low costs, and even though the initial machinery costs for an extrusion process are high, production costs of extruded profiles are relatively low.

Extrusion and the procedures that follow, when correctly performed, assure the quality by creating profiles with a low dimension deviation percentage.

Another reason to use extrusion processes on aluminum it’s the close tolerances achieved. Fine tolerances are important when manufacturing profiles to be used as machine components.

Applications

 Extruded aluminum profiles are used in a wide variety of applications for its low weight, corrosion resistance, and decent mechanical properties. Also, extrusion is quite a simple process, making it easier for customers to obtain their product for a lower price, compared to other manufacturing processes.

The ability to create optimized cross-sections for structural members makes aluminum extrusion one of the favorite manufacturing processes for the automotive and aerospace industry where reducing weight and enhancing the mechanical behavior of a structure increases the overall efficiency of the design. Its corrosion resistance and the wide availability of surface finishes makes it suitable for outdoor applications and those that involve direct contact with salt water, such as the marine industry.

Frequent applications for extruded aluminum are:

1. Machine components in the food industry.

2.Automotive industry.

3.Structural members for the construction industry.

4.Aerospace industry.

5.Ship components for the marine industry.

 Advantages/Benefits of extruded aluminum

 Aluminum alloys offer a series of benefits and extruded aluminum profiles combine these benefits with the possibility of a complete manufacturing process that allows creating optimized cross-sections to lessen weight and exploit mechanical properties. Some of the benefits of extruded aluminum are:

• High strength-to-weight ratio
• Corrosion resistance
• Forces used for the extrusion process are lower than for other metals such as steel
• Ability to create difficult cross-sections
• Aluminum is an excellent thermal conductor, which allows extruded parts to be used in HVACR systems
• Extrusion is an easy mass production process and the extruded profiles can be assembled either by welding or using non-permanent unions such as bolts
• Aluminum is not a magnetic material which allows extrusions to be used as structural members in power transmission facilities where high voltages represent a risk
• Aluminum is easy to recycle, meaning that the use of extruded profiles is sustainable.

 Product defects related to the aluminum extrusion process

No manufacturing process is perfect; they all have their flaws.

Based on our manufacturing experience, we list out typical defects as below for these processes.

1.Blisters

The extrusion process requires compressive forces and relies on friction to re-shape the aluminum and, if excessive forces are applied small blisters tend to appear on the profile’s surface, affecting its mechanical properties and its overall performance.

When these blisters appear the extrusion is classified as deficient and the process needs to be checked to adjust its settings.

2.Surface Streaking

Another flaw related to the extrusion process is surface streaking, which affects corrosion resistance and mechanical properties. There are plenty of reasons pointing to the presence of streaks in aluminum profiles but one of the most common is “carbon marks” caused an increase in friction related to a worn-out extrusion die.

Excessive lubrication, aluminum oxide on the container wall, and differences in cross-sectional wall thickness are also related to the existence of surface streaks.

One way to avoid the appearance of streaks is maintenance. Changing the extrusion die before it wears considerably, checking the lubrication system, and cleaning the extruder after a series of extrusions prevents surface streaking. In most non-extreme cases, anodizing will remove streaks and other surface damages.

3.Center burst

The high stresses supported by the aluminum billet cause are the main cause for center burst, which is perceived as the billet’s internal cracking. Centerburst is an imperfection less likely to occur on aluminum extrusions due to the low hardness of the material and its ductility.

4.Thermal Distortion

Ultimately, extruded aluminum may also suffer from thermal distortion. Distortion is also a consequence of friction, especially when the profile has thin hollow features. Like most metals, aluminum expands due to temperature rises, and not providing an adequate cooling environment are the main cause of thermal distortion.

Extruded aluminum is often heat-treated to enhance mechanical properties and one of the most common heat-treatments applied is water quenching, which causes the metal to shrink. An improper water quenching process, when applied to long extrusions, will most likely cause distortions that are mechanical treatable with an additional stretching process.

Limitation for aluminum extrusion

Extrusion requires the employment of heavy machinery to achieve the large forces needed to push the aluminum through the die. The size of these machines and their cost are the main limitations for the aluminum extrusion process, reserving it for mass production processes in which the number of products generated achieves an economical balance.

Another limitation is that, so far, no changes in the cross-section such as enlargements or reductions are allowed. The cross-section of the profile remains constant, making it less suitable for some special applications where stress concentration requires a non-constant cross-section.

Design tips for aluminum extrusion

To improve the aluminum extrusion, process any profile, we recommend following the next tips:

• Inspect the extrusion die constantly; a damaged die could result in poor surface finishes and tolerances for the profile.

• Make sure of testing your machine configuration before starting the production process on a new profile, this will avoid damaging your equipment and reduces costs and manufacturing time.

• Monitor extrusion data for each material and profile. Possibly you’ll need to extrude the same combination of profile and material, having a working configuration stored will reduce testing time

• If you’re a customer, clearly specify the material and application of your extruded profile to the manufacturer. This is done to inform him if any surface finishing or heat treatment is needed.

To avoid distortion, try not using thin hollow sections and make sure that any heat-treatment is properly applied by providing an adequate heat-transfer atmosphere.

    Get an Instant Quote